
Framework for the Performance Assessment of Architectural Options on
Intelligent Distributed Applications

Günter Haring‡, Carlos Juiz*, Christian Kurz‡, Ramon Puigjaner*, Joachim Zottl‡

‡ Department for Computer Science and Business Informatics, University of Vienna
Lenaugasse 2/8, A-1080 Vienna, Austria

{guenter.haring, christian.kurz, joachim.zottl}@univie.ac.at
*Department of Mathematics and Computer Sciences, University of Balearic Islands

Carretera de Valldemossa, km. 7.5, 07071 Palma de Mallorca, Spain
{cjuiz, putxi}@uib.es

ABSTRACT

This position paper brings together the evaluation of ambient
intelligence architectures in context-awareness systems with
performance modeling. Thus, firstly appropriate description
methods for distributed intelligent applications are summarized.
Derived from the system characterization, typical software
performance engineering techniques are based on the augmented
description of the model regarding performance annotations.
However, these annotations are only related with the syntactical
view of the architecture. In the next generation of performance
assessment tools for intelligent context-awareness systems, the
description of the system would be capable of reasoning and
acquiring knowledge about performance. Having an appropriate
architectural description including performance aspects, any
possible design options for intelligent distributed applications can
be evaluated according to their performance impact. Therefore, we
propose the use of an ontology with performance-related
information - not only to evaluate the architecture off-line - but
also building a context broker that assesses the performance during
execution.

KEYWORDS: performance evaluation, distributed
software performance engineering, context-awareness,
ambient intelligence, mobile devices

1. INTRODUCTION AND MOTIVATION

To be able to create architectures for intelligent distributed
systems one has to consider the capabilities and limitations
of the devices running the applications. One fundamental
aspect is performance issues which have to be included into
the decision process when choosing between different
architectural options. Performance analysis of architecture
options should be integrated in early life cycle stages of a
software development process [8].

The term software architecture (SA) of a program
defines the systems structure, which comprises the software

components, their external observable behavior and the
relationship of these components to each other [1], [3]. A
software design method is a systematic approach for
creating a system design. During a given design step, the
method may provide a set of structuring criteria to help the
designer in decomposing the system into its components [4].
However, non functional features of the system, e.g.
performance, have not been considered for those software
design methodologies. Thus, the performance modeling of
systems is based on a certain type of conceptual
performance formalism (e.g. queuing networks (QN) and
their extension (EQN), stochastic timed Petri nets (SPTN) or
stochastic process algebra (SPA)). As the size and
complexity dramatically increase, many software
(distributed) systems can not provide performance
properties as required due to fundamental architecture or
design problems. During the last years the UML (Unified
Modeling Language) has been widely used to specify,
construct and document the functionality of software
systems [15]. In order to reduce the gap between functional
models and performance evaluation, a software and
performance community has emerged to provide
(automatically) accessible techniques and tools to include
performance annotations for building performance
prediction constituting a new topic in Software and
Performance Engineering (SPE) [9].

UML diagrams provide key information required for
performance analysis so that they describe both behavior
and resources. Therefore, sequence, activity, state chart and
deployment annotated diagrams may be annotated to
express some performance information in a direct or indirect
way [19], [20], [21].

In typical software architectures of distributed systems
communication between clients and servers has an
important role. However, the growing availability of mobile
and wireless networks and the expansion of powerful mobile
devices define new issues for these software distributed
systems. Thus, applications designed for mobile computing
are expected to run in a highly heterogeneous and dynamic

environment, due the limited computing, storage and power
capabilities of portable devices, the large variance in the
communication bandwidth, and maybe the crucial factor, the
mobility itself. In that sense, other mobile topics are
emerging, e.g. the computing ubiquity, the natural
interaction of the systems components and their intelligence.
However, less attention has been paid to these last
phenomena in the performance evaluation arena because the
traditional software architectures for distributed applications
are difficult to translate to ad-hoc communication
environments [18]. Our position is that performance-related
information must be considered not only for performance
evaluation of the actors in a changing mobile environment,
but also in scenarios where it is possible to reason about the
performance activity in an intelligent ambient way and even
take actions on it. Thus, the huge amount of knowledge that
was researched under the software performance engineering
may walk one step beyond to this cutting edge issue.

The remainder of the paper is organized as follows. In
Section 2 we overview the different factors to be considered
in the performance assessment of ambient intelligent
applications (from now we name this approach PA-Ai).
Section 3 of the paper summarizes related work, mainly
giving an overview of work similar to the scope of this
paper. The following section details the structure of the
performance evaluation framework. Finally Section 5
summarizes the conclusions of this paper and provides an
outlook to future work.

2. FACTORS TO CONSIDER IN PA-Ai

The following factors are the main issues to consider for
performance assessment in ambient intelligence
applications.

2.1 Distributed intelligent applications

A distributed application is an application which is executed
based on a distributed system; therefore different parts of
the application are processed on different machines. Usually
the functionality of the architecture is mapped on the client-
server paradigm. However, in mobile applications the client
and server roles are not defined so specifically, some times
devices are clients and some times they are servers. To add
intelligence to such an application usually means that the
system can learn from past experiences and make future
decisions based onto this knowledge.

One possible scenario for a distributed intelligent
application could be a meeting coordination system for
office or congress use (MC scenario) [5]. In that scenario a
congress participant enters the congress area. At that
moment his personal digital assistants (PDA) automatically
connects to the hotel server. It recognizes the conference
participant, accesses his previous behavioral patterns, and
immediately sends him information which could be useful

for him. This information might be a room map when the
conference is entered or the session agenda depending on
the room being entered. It may contain a renewed session
agenda which might have been altered due to short time
changes. Additionally a list of the participants of the
conference or a certain session can be offered, or
supplementary information like presentation slides can be
transferred to the attendees’ mobile computer. The mobile
device can also allow for communication with other
congress members, for example with participants of the
same session.

A second scenario might be useful for office
coordination (OC scenario) [6]. A project manager can
locate the members of his team using a “People Locating
System (PLS)”. This system is able to detect employees
inside a companies building. When the project manager is
scheduling a meeting the PLS is trying to locate all
participants to be invited to be able to deliver them a
message about the meeting schedule. Based on the
participants behavior when receiving meeting information in
the past according to their respective working
circumstances, the PLS decides which type of message it
delivers. When it finds two people together in a room with
several others, it reasons that they are in a meeting and
therefore decides to send them only a message notification
to their PDA. Other members are located at their working
place and thus are considered to be available; therefore they
get the full text message onto their computers. Finally, two
more members cannot be found on the company’s site. The
system hence accesses their appointment calendars and finds
out that one of them has a meeting with a customer and thus
should not be disturbed, and the other one is at his dentist.
To both of them the system sends an email detailing the
forthcoming meeting.

So the key difference between the traditional client-
server architecture and these last scenarios is mainly how
the information is represented in this changing environment.
Whereas in traditional distributed software systems the
representation is meant for computers to process
information, i.e. syntactic level, in the ad hoc connected
communication systems the representation allows devices to
process and reason about information, i.e. semantic level.
Therefore, it is necessary to get a semantic description of the
components in the architecture [22].

Context-awareness systems not only consider the
location but also any information that can be used to
characterize the situation of the mobile devices, e.g. the
system capabilities, the services offered and sought, the
activities among devices and users, and their intentions.

2.2 Mobile Devices

Mobile devices, for example PDA’s or Pocket PC’s, are
essential elements in future context-aware systems. Those
devices are characterized by limited resources. They have

low processing power, constraints in memory capacity,
communication bandwidth, and battery power. Hence, it is
important to find a performance optimal architecture for
applications using these limited devices.

Figure 1: Device Capabilities

Concerning distributed intelligent applications we
should at least consider five basic categories of devices
which could be involved in performing various tasks for the
application (see Figure 1). At the bottom of the pyramid the
category consisting of immobile but powerful Servers,
Workstations or PCs is located. The Notebook or Tablet PC
on top of them is less powerful, but can be moved freely,
only being limited by usually low battery endurance of a
few hours. On the next higher layer PDAs provide less
computing power, a limited user interface but stronger
battery life up to usually about ten hours. Smartphones on
the layer above have extended battery life, but even less
processing capabilities and an even smaller user interface.
On top of the pyramid are the mobile phones which can
feature battery life of more than a week (not at heavy use),
but offer only very limited processing power. Also the
potential communication bandwidth and memory capacity is
smallest on top of the pyramid and is increasing towards the
base of it e.g. for the servers.

2.3 Evaluation of architecture options

Currently a number of well established software
architectures are known, for example: (i) Web-Services are
software components which are made useable via
application servers. This model is also known as service-
oriented architecture (SOA). (ii) In a Client/Server
architecture resources are concentrated in one or a small
number of nodes. So, in this model workload and bandwidth
capabilities are unbalanced. (iii) In Peer-to-Peer-Systems
workload and bandwidth demands will be distributed

uniformly among the connected processors. (iv) Component
models are based on building blocks which describe a well
defined functionality. Such components can be accessed
through interfaces (e.g. Corba, J2EE or .NET). (v) Push-
Systems are used for efficient and timely distribution of
information to a huge number of users. (vi) In Event-Based-
Systems users are notified when determined events occur.

These architectures possess different characteristics like
structure, degree of hierarchy or degree of coupling. When
evaluating architecture options some of them will tend to be
more adequate then others, but for one application there
might be several suitable architecture options. So, given an
application with its requirements and usage patterns a
number of open questions arise. Is there only one adequate
service architecture? How can several architecture options
be assessed and qualified? Which design is the right one
according to the given requirements and basic conditions?
There may not exist a perfectly fitting architecture or a
totally unsuitable one, but architectures which achieve a
more or less suitable solution for a given problem and
usage. A number of methods and techniques were developed
for the evaluation of software architectures, for example:
ATAM (Architecture Tradeoff Analysis Method, [10]),
SAAM (Software Architecture Analysis Method, [11]), or
ARID (Active Reviews for Intermediate Designs, [12]).
However, for our purpose the major question is how to
express the performance-related information in a context-
awareness intelligent application.

3. RELATED WORK

UML diagrams that provide key information required for
performance analysis are those that describe behaviour and
resources together, therefore augmented sequence, activity,
state chart and deployment annotated diagrams may express
some performance information. A huge number of
approaches have been proposed to derive performance
models from software architecture specifications [2].
Basically, the concept can be used in an early stage of the
software lifecycle. It uses the SPE architectural decision
strategy. From annotated UML diagrams performance
models are generated in the corresponding formalism (QN,
SPN, SPA, etc.) and then they are offline evaluated through
analytical, numerical or discrete-event simulation
techniques. Following this procedure, [8] uses the SPE
methodology for deriving performance models from
software architecture specifications. In [7] a derivation of a
QN model from SA is presented. This approach is based on
Client/Server software performance evaluation (CLISSPE).
In [13] an example to generate stochastic timed Petri net
models from UML diagrams is shown. Finally [14] presents
an example for the derivation of a performance model from
an object-oriented design model. Due to the huge amount
and the variety of proposals of 1.X UML performance
extensions, new approaches are being developed for

performance modeling built from UML/SPT profile
(Schedulability, Performance and Time) annotation [17].

Some performance analysis approaches have been
reflected into mobile software architectures from annotated
UML diagrams [2]. However, these solutions cover the
mobility or location-awareness aspects, referring to the
ability of the system to recognise the mobile components
and the services (requested/offered) of the distributed
system but not about the context or the ambient intelligence.
Some performance tools and UML performance annotated
design techniques have been connected through XML/XMI
files [16].

Figure 2: Intersection of PE, SE and OE areas

Several initiatives have been taken to deal with the

topic of a joint terminology of context-awareness systems.
Sponsored by the W3C, the web ontology language OWL
seems to be a de facto standard. The OWL language builds
on XML’s ability to define customized tagging schemes and
the flexible approach to representing data of RDF (Resource
Description Framework). OWL is a language for defining
and instantiating ontologies [23].

Figure 2 shows some of the research areas involved in
the development of a framework to assess the performance
of ambient intelligence applications. SE, PE and OE
disciplines cannot provide a complete solution by
themselves for certain topics, for example, the scope of SPE
problems is located at the intersection between SE and PE.
In this paper, we focus on the overlapping area between PE
and OE and probably should be extended to all three
disciplines.

Thus, critical issues in context-awareness research are
context modeling, context intelligence (reasoning and
knowledge) and context-privacy but other non-functional
aspects are not considered, yet, e.g. context-aware
performance assessment. In any case, software engineering
has moved a bit since there are also early studies to map
OWL into UML, but the approach on SPE may be different,
as in next section we are going to overview.

4. STRUCTURE OF THE PERFORMANCE
EVALUATION FRAMEWORK

There are several issues to be considered when defining a
framework for the performance assessment of architectural
choices in a context-awareness system (PA-Ai) that are
similar to traditional SPE techniques: (i) It must be decided
about the way the intelligent system is modeled and
therefore, how to add the performance-related information
(and which is interesting) into the specification with the
minimal interference; (ii) Once the performance aspects of
the system are depicted in the model, how to transform the
architectural options onto a performance model and finally;
(iii) how to evaluate the performance model of every choice.
We are going to refer to this as Offline Performance
Evaluation to distinguish if from the Online Adaptive
Performance Brokerage.

4.1 Off-line Performance Evaluation

The framework shall provide an opportunity to compare
different alternatives for architectures based on the
capabilities of the involved devices and communication
infrastructure. Thus an assessment of architecture options
with respect to performance for various alternatives is done.
This framework gives a strategy for a performance
evaluation for architecture options based on relative
performance predictions.

Figure 3: Framework Architecture

The overall architecture of the framework is depicted in
Figure 3. The application determines the input parameters
which are the requirements and perspective usage of the
system. Depending on these parameters, several
architectural options Ai may be feasible. In the next stage,

these architectural options (based on an appropriate
description) are transformed into a selected performance
model which can be evaluated. This strategy does not differ
from the traditional performance assessment for distributed
applications although it has to consider the semantic
representation of the information on the model.

An ontology is an explicit formal description of
concepts in the domain composed of classes, properties of
each class, and restrictions on properties. Therefore, it
expresses the set of terms, entities, objects and classes and
the relations between them with formal definitions. The use
of ontologies contributes to knowledge sharing and reuse
across systems. OWL ontologies are usually placed on web
servers as web documents, which can be referenced by other
ontologies and downloaded by applications that use these
ontologies.

Our position is that performance-related information
may be also declared through this new approach, not only
for performance evaluation of the actors in a changing
mobile environment, but also in scenarios where it is
possible to reason about the performance activity in an
intelligent ambient way and even take actions based on it.

On the other hand, ontologies can be used to build an
information model, as some of the UML diagrams do, which
allows the exploration of the information space in terms of
the items which are represented, the associations between
the items, the properties of the items, and even the links to
documentation which describes and defines them (i.e., the
external justification for the existence of the item in the
model). That is to say that the ontology and taxonomy are
not independent of the physical items they represent, but
may be developed / explored in tandem. Thus, an ontology
may consider performance-related information as
description of the architecture of a system. Moreover, OWL
should be compatible with other commonly used Web and
industry standards. In particular, this includes XML and
related standards (such as XML Schema and RDF), and
possibly UML. Therefore we may exploit the interchange
format between OWL and performance evaluation tools in
the same manner as SPE engines. Figure 4 shows part of a
simple example of OWL ontology encoded in RDF/XML.

<owl:Class rdf:ID="PDA">
 <rdfs:subClassOf rdf:resource="device" />
 ...
</owl:Class>

<owl:Class rdf:ID="performanceDescriptor" />

<owl:ObjectProperty rdf:ID="activity">
 <rdfs:domain rdf:resource="#device" />
 <rdfs:range
rdf:resource="#performanceDescriptor" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="locatedIn">
 ...

 <rdfs:domain
rdf:resource="http://www.w3.org/2002/07/owl#T
hing" />
 <rdfs:range rdf:resource="#building" />
</owl:ObjectProperty>

<owl:Class rdf:ID="demand" />
 <rdfs:subClassOf
rdf:resource="performanceDescriptor" />

<owl:DatatypeProperty rdf:ID="demandValue">
 <rdfs:domain rdf:resource="#demand" />
 <rdfs:range rdf:resource="&xsd;float"/>
</owl:DatatypeProperty>

<demand rdf:ID="exp_average">
 <demandValue
rdf:datatype="&xsd;float">4.500</demandvalue>
</demand>

Figure 4: Simple OWL performance example

We provide a simple example of a vocabulary for
performance-related information for the location
information and average demand requirements of PDA
devices (some information has been deleted due to space
limitation of the text).

4.2 On-line Performance Assessment

However, proposing the use of OWL as a language to
express similar performance annotated information as other
de facto standards may not justify the effort. In this last
case, only the syntactical view of OWL should be exploited.

One of the definitive features in ambient intelligence
applications is the service discovery, i.e., functions offered
by various mobile (e.g. mobile phones, PDAs, notebooks)
and non-mobile devices (e.g. servers, printers, panels) that
can be described and advertised, so that, they are sought-
and-found by others. All of the current service discovery
and capability description mechanisms (e.g. JINI, UPnP,
JXTA, Bluetooth…) are based on ad-hoc representation
schemes and rely heavily on standardization due to devices
which were not necessarily designed to work together (such
as ones built for different purposes, by different
manufacturers, at a different time, etc.) as we experienced in
the AKSIS project [5].
Being able to communicate at a high-level of abstraction
with other devices, and reason about their
services/functionality and performance is necessary for the
complete evaluation of different architectural choices.

Thus, an ontology language will be used to describe the
characteristics of devices, the means of access to such
devices, the policy established by the owner for the use of a
device, and other technical constraints and requirements that
affect incorporating a device into a ubiquitous computing
network. The needs established for DAML-S (DARPA
Agent Markup Language) [25] and the RDF-based schemes

for representing information about device characteristics
(namely, W3C's Composite Capability/Preference Profile
(CC/PP) and WAP Forum's User Agent Profile (UAProf))
directly relate to this use case and the resource infrastructure
which will support mobile applications and dynamically
configure/negotiate ad-hoc networks. Thus, the performance
information about resources, activities, actions, etc. in the
context may be included as subproperties and datatypes in
an extended vocabulary for OWL. This performance-related
information and several simple operational rules and
heuristic knowledge may be used for reasoning during
execution about the performance of devices and services.
Therefore, scenarios as OC or MC may be implemented
through a team of context brokers. The context brokers
would be running on stationary servers. A service discovery
infrastructure will meet devices and servers, and the
ontology will acquire information and reason about users,
location, privacy and also performance. For example, in the
OC scenario the ontology must include identifiable places in
order to infer about location context. Reasoning about the
spatial situation can predict performance improvements for
example by mirroring services or automatically by disabling
inactive device connections. To support reasoning with the
device hardware/software descriptions, the ontology not
only has to include profiles that would be extensions of [24]
but also about PDAs and mobile phones to implement the
MC scenario. Inferring about the device profiles may play
an important role for capacity planning during context
execution. The DAML ontology is a temporal ontology for
expressing time-related properties. An extended OWL
would have to consider this crucial information for
performance prediction since it could be used to know the
throughput of servers, the latency of a connection, the
utilization of a device, etc. Moreover, location and temporal
reasoning may be correlated for performance assessment
purposes learning about inconsistencies among
offered/required services in the scenarios.

5. CONCLUSION AND FUTURE WORK

This position paper tries to address the use of ontology as
the solution to evaluate the performance of intelligent
context-aware systems. Our preliminary study shows that
OWL is not only a requirement for knowledge sharing in
pervasive ambience, but also for acquiring performance-
related information and the subsequent reasoning. However,
the first step is to show that the syntactic use of ontologies
for performance evaluation may incorporate the same
information as annotated modeling languages in the SPE
area. Thus, the off-line performance evaluation of
architectural choices would be computed from the object
properties and datatype definitions with performance
constraints. The interconnection between the annotations
and the performance tools for analytical solving or discrete-
event simulation would use the XMI/XML interchange

formats. Although this work is only overviewed in this
paper, it could represent a primary step for evaluating the
performance of context-awareness systems.

A more ambitious project would be the utilization of
context brokers in order to assess performance during
context execution. The advantage of the OWL description of
the ambient may use the semantics to infer performance
knowledge. Even the off-line performance evaluation relies
on the annotated constraint values; it seems to be possible to
get information on-line about the relationships in the context
and to reason about them. Thus, a team of context brokers
would implement the architecture in various aspects of
pervasive computing, e.g. location, timing, device profiling,
etc. and performance.

6. REFERENCES

[1] Bass L., Clements P., and Kazman R., Software

Architecture in Practice, Addison-Wesley, 1998
[2] Cortellessa V., and Mirandola R., “PRIMA-UML: A

Performance Validation Incremental Methodology on
early UML Diagrams”, Science of Computer
Programming, vol. 44, pp. 101-129, 2002

[3] Dustdar S., Gall H., and Hauswirth M., Software-
Architekturen für Verteilte Systeme, Springer-Verlag,
2003

[4] Gomaa, H., Software Design Methods for Concurrent
and Real-time Systems, The SEI Series in Software
Engineering, N. Habermann (ed.), Addison-Wesley,
Reading, Massachusetts, 1993

[5] Hummel K.A., “Meeting Coordination“,
http://www.ani.univie.ac.at/~karin/ambience/scenarios/
meeting.pdf

[6] Hummel K.A., “Office Communication“,
http://www.ani.univie.ac.at/~karin/ambience/scenarios/
communication.pdf

[7] Menascè D.A., and Gomaa H., “On a Language Based
Method for Software Performane Engineering of
Client/Server Systems”, in Proceedings of the 1st
International Workshop on Software and Performance,
pp. 63-69, 1998

[8] Smith C.U., and Williams L.G., “Performance
Evaluation of a Distributed Software Architecture”, in
Proceedings of the 1st International Workshop on
Software and Performance, pp. 164-177, 1998

[9] Smith C.U., and Williams L.G., Performance Solutions:
A Practical Guide to Creating Responsive, Scalable
Software, Addison-Wesley, 2002

[10] Kazman R., Klein M. Barbacci M., and Lipson H.
Longstaff T. Carriere S.J., “The Architecture Tradeoff
Analysis Method“, in Proceedings of the 4st IEEE
International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 68-78, 1998

[11] De Simone M., and Kazman R., “Software Architecture
Analysis: An Experience Report”, in Proceedings of the

1995 conference of the Centre for Advanced Studies on
Collaborative research, 1995

[12] Clements P., “Active Reviews for Intermediate
Designs”, Technical Note CMU/SEI-2000-TN-009,
Software Engineering Institute, Carnegie Mellon
University

[13] King P., and Pooly R., “Derivation of Petri Net
Performance Models from UML Specification of
Communication Software”, in Proceedings of the 1997
Computer Measurement Group Conference, 1997

[14] Smith C.U, and Williams L.G., “Performance
Engineering Evaluation of Object Oriented Systems
with SPE•ED”, in Computer Performance Evaluation:
Modelling Techniques and Tools, Springer-Verlag,
1997

[15] Object Management Group (OMG): Unified Modeling
Language Specification, version 1.3,
http://www.omg.org/uml

[16] Object Management Group (OMG): XML Metadata
Interchange (XMI) Specification, version 1.2,
http://www.omg.org/cgi-bin/

[17] Object Management Group (OMG): UML Profile for
Schedulability, Performance and Time Specification,
March 2002

[18] Beer, W., Christian, V., Ferscha, A. and Mehrmann L.,
“Modeling Context-Aware Behavior by Interpreted
ECA rules”. In Proceedings of Euro-Par 2003, H.
Kosch, L. Böszörményi and H. Hellwagner (Eds.),
LNCS 2790, pp. 1064-1073, 2003

[19] Proceedings of the Second Workshop on Software and
Performance (WOSP 2000), Ottawa, Canada,
September 2000, ACM Press

[20] Proceedings of the Third Workshop on Software and
Performance (WOSP 2002), Rome, Italy, July 2002,
ACM Press

[21] Proceedings of the Fourth Workshop on Software and
Performance (WOSP 2004), San Francisco, USA,
January 2004, ACM Press

[22] Berners-Lee, T., Hendler, J. and Lassila, O. “The
Semantic Web”, Scientific American, May 2001

[23] Van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D.L., Patel- Schneider, P.F. and Stein,
L.A. “OWL Web Ontology Language reference”, 2002,
http://www.w3c.org/TR/owl-ref/

[24] Foundation for Intelligent Physical Agent. FIPA Device
Ontology Specification, pc00091a edition, 2001

[25] Hobbs, J.R. “A DAML Ontology of Time”,
http://www.cs.rochester.edu/daml

